

A Diachronic Counter-example to the Subset Principle: The Case of Anatolian Reduplication

INTRODUCTION

- The "Subset Principle" (cf. Prince & Tesar 2004): learners choose the most restrictive grammar consistent with the positive evidence (\approx initial bias of MARKEDNESS \gg IO-FAITHFULNESS).
 - simple Recursive Constraint Demotion (RCD; Tesar & Smolensky 1998).
- The diachronic development of the Anatolian reduplicative system represents a case where speakers learned a **superset** grammar.
- **Proposal:** "Maximally Informative Recursive Constraint Demotion" (MIRCD)
 - account for the greatest amount of data possible.
 - between the violation profiles of crucial constraints.

2. ANATOLIAN DATA

• **Reduplication patterns** of Hittite and its (reconstructed) proximate ancestor Proto-Anatolian [abbrev. PA] (following Yates & Zukoff 2016a,b, in press, Zukoff 2017; cf. Dempsey 2015):

	Base Shape	Proto-Anatolian	>	Hittite
	СVХ-	* <u>CV</u> -CVX–	>	<u>CV-CVX–</u>
(1)	TRVX-	* <u>TV</u> -TRVX–	>	TRV-TRVX-
	STVX-	*STV-STVX-	>	iSTV-STVX-
	VRTX-	does not exist yet	>	<u>VR-VRTX</u> –

- Distribution analyzed with *PCR, a constraint against certain types of consonant repetitions:
- NO POORLY-CUED REPETITIONS (*PCR) [\approx *C_{α}VC_{α} / _C_[-sonorant]] (2) violation mark * if that sequence immediately precedes an obstruent.

3. ANATOLIAN ANALYSIS & DIACHRONY

- CONTIGUITY-BR (McCarthy & Prince 1995) must rank low in PA to allow TRVX- C₁-copying in *pi-pri–* (4.i), but high in Hittite to generate TRVX– cluster-copying in *pri-pri–* (4.ii).
- *PCR must rank high in PA to generate STVX– cluster-copying in stu-stu– (5.i), but low in Hittite to allow VRTX– *ar-ark*– to emerge (6.ii).
- ALIGN-ROOT-L is ranked in the middle at both stages.
- (3) edge of the root and the left edge of the word.

Anthony D. Yates, UCLA (adyates@ucla.edu) & Sam Zukoff, Princeton (szukoff@princeton.edu) AMP 2018 • University of California, San Diego • Oct 5-7, 2018

(7)

• Capturing the Subset Principle is key argument in favor of Biased Constraint Demotion (BCD; Prince & Tesar 2004) and Low Faithfulness Constraint Demotion (LFCD; Hayes 2004) over

 \rightarrow Our learning algorithm needs to accommodate (a specific kind of) non-Subset learning.

• A version of RCD (or BCD) which is biased towards winner-preferring constraints that can

• Non-Subset learning is permitted with MIRCD when there is a superset-subset relationship

* Distinction in copying patterns in PA between *obstruent-sonorant* (TRVX–) bases and *s-obstruent* (STVX–) bases: C₁-copying vs. cluster-copying.

(Zukoff 2017) For each sequence of repeated identical consonants separated by a vowel ($C_{\alpha}VC_{\alpha}$), assign a

ALIGN-ROOT-L: Assign one violation mark * for each segment intervening between the left

4. ANATOLIAN ANALYSIS & DIACHRONY (CONT.)

	i. Proto-Anatolian			>		ii. Hittite			
(4)	/RED, pri-/	*PCR	Align	$CNTG_{BR}$		/RED, pri-/	CNTG _{BR}	ALIGN	*PCR
	a. ☞ <u>pi</u> -pri–		**	*		a. <u>pi</u> -pri–	*!	**	
	b. <u>pri</u> -pri–		***!			b. ☞ <u>pri</u> -pri–		***	
(5)	/RED, stu-/	*PCR	Align	CNTG _{BR}		/RED, stu-/	CNTG _{BR}	ALIGN	*PCR
	a. <u>su-stu</u> –	*!	**	*]	a. <u>su-stu–</u>	*!	**	*
	b. ☞ <u>stu</u> -stu–		***			b. 🖙 istu-stu-		***	
	No pattern exists yet:]	/RED, ark-/	CNTG _{br}	ALIGN	*PCR	
(6)	no vowel-initial roots in PA				a. 🖙 <u>ar</u> -ark–		**	*	
	(Yates & Zukoff in press)				b. <u>ark-ark–</u>		***!		

• Total demotion of *PCR constitutes a **diachronic counter-example to the Subset Principle**.

- Learners learned a grammar with a low-ranked markedness constraint despite not encountering evidence that it was violable.
- **Question:** What could have led learners to fail to obey the Subset Principle in this case?
- ***** Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
 - RCD with a preliminary step which picks out and installs the constraints that favor the most *winners* first (cf. Becker 2009), i.e., the most "informative" constraints.

5. MIRCD IN PRE-HITTITE [AFTER CHANGE FROM TV-TRVX- TO TRV-TRVX-]

• MIRCD first installs $CNTG_{BR}$ because it has only W's, an \rightarrow RCD would install *PCR, but MIRCD does not beca

MI	RCD (round 1) \Rightarrow install $C_{NTG_{BR}}$	CNTG _{BR}	*PCR	Align	$MAX_{\scriptscriptstyle BR}$
i.	$TRVCV- \to TRV\text{-}TRVCV- \succ TV\text{-}TRVCV-$	W	e	L	W
ii.	$TRVCV{\text{-}} \to TRV{\text{-}}TRVCV{\text{-}} \succ TRVCV{\text{-}}TRVCV{\text{-}}$	e	e	W	L
i.	$STVCV\text{-}\toSTV\text{-}STV\text{-}V\text{-}SV\text{-}STV\text{-}V\text{-}$	W	W	L	W
ii.	$STVCV{\text{-}} \to STV{\text{-}}STVCV{\text{-}} \succ STVCV{\text{-}}STVCV{\text{-}}$	e	e	W	L

• Among remaining support (white rows), ALIGN is the only winner-preferrer, so it gets installed. \rightarrow Again unlike RCD, MIRCD does not install PCR despite it preferring no losers. • All data is now explained, so *PCR (and MAX_{BR}) are ranked at the bottom of the grammar. \rightarrow This is the ranking necessary to allow the later emergence of *VR-VRTX*–.

• Non-Subset learning is permitted w/ MIRCD here because of the superset-subset relationship between $CNTG_{BR}$ and *PCR: *PCR explains a proper subset of the data which $CNTG_{BR}$ explains. • Under these specific conditions, MIRCD produces the non-Subset learning necessary to capture the Anatolian facts, without predicting non-Subset learning in the general case.

nd tl	he most	W's.		
ause	e it does	not have	the most	W's.